3 New syllabus: Paper I answers

> (\%)
> இலங்கைப் பரீட்ணைத் திணைக்களம்

Dmase qomes	20	$0^{2 \times 000}$	ICT

(8)

gade 400nco வी,unr 蔮 000.	880r விออน \%	gamo comex clsmir ®o	80xar 40mice Leme. Bis.	gaden 40 min cilant ※0.	B9an coricas clapl 800.	gatan 4 amas cilani 80.	Bear 4 4nacs cifon (20).	gabs 40 mides cilorir 80.	Beanor comen Clicm 2en
0.	1	11.	3.	21.	..1...	31.	-.-3---	, 41.	1.
02.	5	12.	4.-	22.	5	32.	...3..-	42.	$\ldots 2$
63.	2	13.	1.	23.	1.	33.	1.	43.	-.-4.-
04.	4.-	14.	3	24.	5	834.	..	44.	-.-2.-
05.	...-4.-	, 15.	5.-	25.	.2.-	35.	- 3	45.	-..2.-
06.	4.--	16.	5.	26.	. 4.	36.	...4...	46.	. 1
07.	... 2.	17.	... 2.	27.	. 5	37.	...3.-	47.	.-All
08.	2	18.	1	28.	3.	38.	4	48.	5
69.	4	-19.	4.	29.	4	39. 3	49.	5
16.	3	20.	3	30.	2	40	...3.-	, 50	4

 © ©

5 New syllabus: Paper II mark scheme

Note

1. Essential keywords sufficient for credit in some answers are underlined.
2. Acceptable alternatives for a given word or set of words are separated by slashes.
$3 . \leftrightarrow-A$ indicates that any credit for the item should be given only if A is correct.
3. (a) Draw the expected output of the IITML code segment.

The headings of the table must be in bold and center aligned. The data in the table must be left-aligned. Ignore border style. table left aligned.

(b) (i) What are the colours of the text in line numbers 8 and 9 ?

1 mark for each:
Line number 8: green / woe
Line number 9: blue / Sc
(ii) One advantage of defining styles as in lines $3,4,5$ over 8

1 mark for any one of the following for a maximum of 1 mark:

(iii) Content of the required external style sheet

Everything must be spelled correctly. Ignore case defects.

1. mark for each:
hi \{color: green; \} ~
*appear \{font-family:Arial;\}
(c) (i) Write the labels of the four code blocks.

D
A \quad No Partial Marlcs
A
C
(ii) What is the expected output if the Product table had only the given values?

Proper case important. Ignore case defects.
1 mark for each:
Code:P1/Item: Pen
Code:P3/Item:Book

The remainder of this page intentionaliy leet blank.
2. (a) Fill the blanks in the six statements choosing from the list.

Ignore case, hyphens.

1 mark for each:
(i) w 'cి

(b) (i) Write the output of the given python program if the first input (that creates L1) is "7 41228 " and second input (that creates L2) is "8 2456 ".
$[2,4,8]$

Marks allocated as follows:
A: 1 mark for any combination of the numbers 2,4 and 8 in any order (ignore spaces and comma separators)
B: 1 mark for the exact answer which is $[2,4,8]$
(ii)

What is the purpose of this program?

1 mark for any two of the following for a maximum of 2 marks:

- clements that are present in both L1 and L2
- unique elements / distinct elements / no duplicates
- output in sorted (or ascending or increasing, or non-decreasing) order

3. (a) (i) State two service models in cloud compuling.

Ignore any case defects in the abbreviations.
1 mark for any two of the following for a maximum of 2 marks:

- motcc owbo Dos ఠce / FaaS
(ii) What are the three steps in the FETCH-EXECUTION cycle of a computer?

1 mark for each correct line:

1. टuoces Can corzo

Correct order important. Other alternative words with similar meanings to those underlined are also accepted. If there are any meaningless entries along with correct ones, reduce a maximum 1 mark from the earned total mark.
(b) Match the given five sentences to terms.

1 mark for each:
(i) UDP
(ii) HTTP

(iv) nฑ2ロて, - Phishing

4. (a) (i) Give one reason for Running to Blocked transition of spreadslieet process.

1 mark for any one of the following for a maximum of 1 mark:

(ii)

Why is it important to store the values for machine registers when moving from
Running to Ready? Running to Ready?

Marks allocated as follows:

(b) (i)

301
(ii) Size of maximum.py is increased to 20KB. What changes are needed in FAT for that purpose?

1 mark for each:

(c) (i) How many bits are required to store a page number in this computer?

4
(ii) Explain the mapping of the virtual address 0011000000000010 to 110000000000010 .

1 mark for each:

-0555の.
(iii) What is the 15 -bit physical address that the virtual address 0001000000000000 will be mapped to?
5. (a) Give the complete truth table for the given circuit.

A	B	C	Z
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Marks allocated as follows:
4 marks for all 8 rows correct
3 marks for maximum $5,6,7$ rows correct
2 marks for maximum 3,4 rows correct
1 mark for maximum 1,2 rows correct
If the Z column is not labelled, reduce 1 mark from the carned total. However, having Output as the Z column title is acceptable.
(b) \qquad

Marks allocuted as follows:
A: 1 mark for the correct Karnaugh map with proper labels, 0 and 1 entries
B: 2 marks for correctly marking the two loops in the Karnaugh map (1 mark for each)
C: 1 mark for correct, simplified final SOP expression as $\mathrm{Z}=\mathrm{AC}+\mathrm{BC}(\nleftarrow-B)$

Notes:
(A) Other logically correct Karnaugh maps are also acceptable for component \mathbf{A}.
(B) For component \mathbf{C}, the term \mathbf{Z} is not compulsory.
(c) Using a K map, derive a simplified POS expression for 7.

Marks allocated as follows:
A: 1 mark for the correct Karnaugh map with proper labels, 0 and 1 entries
B: 2 marks for correctly marking the two loops in the Karnaugh map (1 mark for each)
C: 1 mark for correct, simplified final POS expression as $Z=(A+B) C(\leftarrow-B)$

Notes:
(A) Other logically correct Karnaugh maps are also acceptable for component A.
(B) For component \mathbf{C}, the term \mathbf{Z} is not compulsory.
(d)
Out of the two expressions which one is better to implement a more simplified logic circuit than the
given logic circuit. Explain.

Explanation:

Marks allocated as follows:

A: 1 mark for correctly identifying that the POS is better than the SOP (+- correct SOP and POS expressions for 5(b) and 5(c))
B: 2 marks for correct explanation on why the POS is better than the SOP given as follows: ($+-A$)
1 mark: POS has fewer (3) literals and leads to a logic circuit with 2 gates 1 mark: SOP has more (4) literals and leads to a logic circuit with 3 gates or alternatively:

B: 2 marks for correctly showing the two correct circuit diagrams and identifying the better one or for indicating generally that POS results in a circuit that has fewer gates when compared to the circuit resulting from SOP ($\leftarrow-A$)

ImPORTANT: Note the dependency in marking component A. This basically means not to give credit for part (d) if the student is not basing his/her argument using the expressions Z $=A C+B C$ and $Z=(A+B) C$.
6. (a) Which network topology is most suitable? Give one reason to justify.

Marks allocated as follows:
A: 1 mark for $)^{2} \sigma_{\tau}$
B: 1 mark for any one of the following reasons:

- ริตออวผรึ ลอ (if one cable or device fails then all the others will still continue to work)
(b)

Fill the IP address table.

Department	Network ID	Broadcast ID	Subnet Mask	Usable IP Address Range
Finance	192.168 .14 .0	192.168 .14 .63	255.255 .255 .192	192.168 .14 .1 -192.168.14.62
HR	192.168 .14 .64	192.168 .14 .127	255.255 .255 .192	$192.168 .14 .65-192.168 .14 .126$
IT Unit	192.168 .14 .128	192.168 .14 .191	255.255 .255 .192	$192.168 .14 .129-192.168 .14 .190$
Marketing	192.168 .14 .192	192.168 .14 .255	255.255 .255 .192	$192.168 .14 .193-192.168 .14 .254$

Marks allocated as follows:

6 marks for all 12 highlighted cells correct
5 marks for maximum $9,10,11$ highlighted cells correct
4 marks for maximum 7,8 highlighted cells correct
3 marks for maximum 5,6 highlighted cells correct
2 marks for maximum 3,4 highlighted cells correct
1 mark for maximum 1,2 highlighted cells correct

The remainder of this page intentionally left blank.
(c) Draw the logical arrangement of the network to implement company requirements.

1 mark for cach:
A: Internet - Router - Firewall - IT switch link
B: Connecting HR, Finance and Marketing switches to the IT switch
C: Connecting Proxy and the DNS servers to the IT switch
D: Connecting AIS, HRIS, LMS and MKIS servers to Finance, HR, IT Unit and Marketing switches respectively
E: Connecting the computers to the switches in each department
F: Connecting the three network printers to Finance, HR and Marketing switches and nonnetwork printer to a computer in the IT Unit

Notes: The following standard symbols are also accepted in the diagram:

Router	Firewall	Switch	
			5

(d) Write down the mechanism that needs to be implemented to dynamically manage the IP addresses.

DHCP ©世
7. (a) (i) What is the ecommerce business type applicable in this scenario?

(ii)

What is the revenue model used in this e-commerce offering of AB stores?

(iii) \qquad than the e-commerce solution.

Any two from the following reasons with 1 mark each:

 internet connectivity, online payment method)

(iv)
What is the ecommerce business type that AB stores implements
when their ecommerce system is integrated with suppliers' systems
to maintain its product stocks through automation?

Dวsorsoరowro DussoubwD/B2B / Business to Business
(v) \qquad within it [the system]?

(vi) Write down one advantage that each of (1) customers, (2) AB stores and (3) other local shops will receive by having the proposed system in (v) above.
(1) Customers: 1 mark for any of the following:
 3n2 2002

 to some extent)
（2）AB Stores： 1 mark for any of the following：

－nอ fio Crనిల
 かってw

（3）Other local shops： 1 mark for any of the following：

（vii）
What is your suggestion to enable most of the registered customers to make purchases successfully through the system and receive their goods at home without any restriction？Explain．
 suggested by the student with any one of the following explanations：
－\％Q qDero mowishis is a low risk method as the users are registered and nearby with a low delivery cost even if they refuse to honor the purchase／payment．）
 of registered customers，who cannot pay online，to make successful e－commerce purchases．）
（viii）
Explain two advantages that AB stores can get by outsourcing the delivery of customer purchased goods to a third party delivery service．

Any two from the following at 1 mark each：

 อజิต

bit.ly/ictmcqhub

(b) (i) Draw a simplified agent diagram and name important entities.

 (Taxi Search/Taxi Search Agent)

Marks allocated as follows:
A: 0.5 marks for User to ChatBot Agent interaction (two-way arrow with or without text)
B: 0.5 marks for GhatBot Agent to Scarch agent intcraction (single direction arrow with or without text)
C: 0.5 marks for Search Agent to Flight Search Agent, Hotel Search Agent [and optionally Tari Search Agent] interactions (two-way arrows with or without text)
D: 0.5 marks for Search Agent to User interaction to display tour packages (single direction arrow with or without text) Note: For this, two-way arrows can be considered as well.

Important:

1 If the diagram has interactions between ChatBot Agent and Flight Search / Hotel Search / Taxi Search Agents then DO NOT give marks for BOTH B and C.
2 If the diagram has interactions between Flight Search, Hotel Search and Taxi Search Agenls (i.e., among themselves) - DO NOT give marks for C.
Note: If a student has included a user interface, ignore that additional information and mark as given in the scheme

(iii)

0.5 marks for any of the following:

 user interaction/fine tuning during the search)

 ©nome ${ }^{\circ}$ (Agent specific isolated search can be ineffective with lots of results not fitting into the common criteria once the results are combine to make the complete package offer)

NOTE: Round-off the final mark obtained for part (b).
8. (a)

Begin
input N1, N2
for $a=N 1$ to N2 if (a is even) output a end-if
end-for
End
or
Begin
input N1, N2
$\mathrm{a}=\mathrm{N} 1$
while a<=N2
if (a is even)
output a
end-if
$a=a+1$
end-while
End
Notes:

1. The even number check could be indicated in numerous ways which can all be considered correct

Examples:
if ($\mathrm{a} \% 2=0$)
if $(\operatorname{a}$ modulus $2=0)$
if $(a \bmod 2=0)$
if (remainder of $\mathrm{a} / 2=0$)
if (a is not odd)
if ($\mathrm{a} \% 2$ not equal to 1)
2. The output list may exclude both

N 1 and N 2 as well.
3. Acceptable synonyms (ignore case): (Start, Begin), (Stop, End, Finish).
(Input, Get, Read),
(Output, Print, Show, Display)

Marks allocated for either flowchart or pseudo-code as follows:
A: 1 mark for correct input action
B: 1 mark for correct $a \leq N 2$ looping including the diamond symbol in the flowchart ($+--A$)
C: 1 mark for correctly checking even number ($+-B$)
D: 1 mark for correct output action $(\leftarrow--C)$
E: 1 mark for completencss ($+--D$)
FLOWCHART: important arrows and correct symbols for start, stop, input/output, processes
PSEUDO-CODE: Begin-End, indentation

An ALTERNATIVE：

Translations：

```
Start &\sigmaふ0n\omega
```



```
Is a>N2?/a}N>N2 द
yes / 20
no つ(3)
Is a even?/a अ0000द?
```



```
Stop/qOん~こ心
```

Begin
input N1．N2
$\mathrm{N} 1=\mathrm{NI}-1$
$\mathrm{R}=\mathrm{N} 1 \bmod 2$
if（ $\mathrm{R}=1$ ） $\mathrm{M}=\mathrm{N} 1+1$
eise $\mathrm{M}=\mathrm{N} 1+2$
end－if
repeat
output M $\mathrm{M}=\mathrm{M}+2$
until（ $\mathrm{M}<=\mathrm{N} 2$ ）
End

The marks allocation is similar to the first solution：
A：I mark for correct input action
B： 1 mark for correct $M \leq N 2$ looping including the diamond symbol in the flowchart （ $+--A$ ）
C： 1 mark for correctly checking even number（ $\&-B$ ）
D： 1 mark for correct output action（ $\leftarrow-C$ ）
E： 1 mark for completeness（ $\leftarrow-D$ ）
Howcilari：important arrows and correct symbols for start，stop，input／output，pro－ cesses
PSEUDO－CODE：Begin－End，indentation

The marks allocation is similar to the first solution:
A : 1 mark for correct input action
B: 1-mark for correct N1 \leq N2 looping including the diamond symbol in the flowchart ($+-A$)
C: 1 mark for correctly checking even number ($\leftarrow-B$)
D: 1 mark for correct output action ($\leftarrow-C$)
E: 1 mark for completeness ($\leftarrow--D$)
FLOWCHART: important arrows and correct symbols for start, stop, input/output, processes
PSEUDO-CODE: Begin-End, indentation
(b) (i)

What would be the output if first input L was $2,4,7,9,3,5$ and the next input K was 5 ?

7
(ii) What is the purpose of this algorithm?
[2]

Marks given as follows:
2 marks if answer correct
1 mark for incomplete/partially correct answer (e.g., "find the smallest element in L" or equivalent)
0 marks for any other answer
(iii)

Develop a python program to implement the algorithm expressed by the flowchart.
[6]

```
# Inputs: L is a non-empty list of positive integers
# K is a positive integer
# Every element in L is less than M, which is pre-defined large integer
# Output: the smallest element in L that is larger than K
#
inList = input("Enter the elements in L: ")
L}=[\mathrm{ int( }x\mathrm{ ) for }x\mathrm{ in inlist.split()]
K = int(input("Enter K: "))
M = 1000
for i in L:
        if i > K:
            if i<M:
                M=i
print("Smallest element in L that is larger than K is", M)
```

Allocate marks as follows rounding off the final total:
A: 0.5 marks for correct input of the list L
B: 0.5 marks for correct input of K
C: 1, mark for correct initializing of M to a reasonably large value
D: 1 mark for correct looping to process items in L one by one($\leftarrow-A, B, C$, colon)
E: 0.5 marks for comparing each item with K inside the loop ($\leftarrow-D$, indentation, colon)
$\mathrm{F}: 0.5$ marks for comparing items larger than K with M inside the loop ($\leftarrow-E$, indentation, colon)
G: 1 mark for setting value of M correctly to identified item inside the loop ($\leftarrow-F$, indentation)
$\mathrm{H}: 1$ mark for correct output (print) of $\mathrm{M}(\leftarrow--G$, indentation)

Notes:

(\mathcal{A}) The objective of the second line of code in the suggested solution is to transform the string received from built-in function input() into the list of integers, L. Note that input() gives us a single string. Therefore the following operations are performed to obtain L :
(1) Split the input string using ".split()" method which gives a list of strings, splitting the "words" that were separated by "space" in the input string. For example, if the input string was "2 47935 ", then the split() method would produce [" 2 "," 4 "," " ", " 9 ", " 3 ", " 5 "].
(2) Convert each string in the list of strings into an integer using int(). For example, the list [" 2 ", " 4 ", " 7 ", " 9 ", " 3 ", " 5 "] will be converted into the list $[2,4,7,9,3,5]$.
The two step process above for (input string) \rightarrow (list L of integers) conversion can be done in multiple ways.

One way is, as shown in the suggested solution, in a single line of code (2nd line):
L=[int(x) for x in inList.split()]
Another way (which is also correct) is to separate the use of split() and int(). First use split() to obtain a list of strings. Next go in a loop converting each string into an integer using int(). The four lines of Python code is as follows:

```
strLlist = inList.split() # this will produce a list of strings
L = [ ] # let L be an empty list
for s in strList:
    L.append(int(s))
```

There can be other correct ways to do this. Students may write such code. Therefore in marking, we should check for such possibilities also.
(\mathcal{B}) Instead of $1000, \mathrm{M}$ could be set to a reasonably large integer.
e.g., $M=\max (L)+1$ \# or $M=2 * * 31-1$

Also, M can be obtained as an input as well.
(C) A while loop can also be used as follows:
$\mathrm{L}=$ [int(x) for x in input("Input elements in $\mathrm{L}:$ ").split()]
$K=$ int(input("Input $K: ~ ")) ~$
$\mathrm{N}=\operatorname{len}(\mathrm{L})$
$X=1000$ \# or a reasonably large integer
$a=0$
while $a<N$:
if L [a] > K:
if $L[a]<X$: $X=L[a]$
$a=a+1$
print("Smallest element in L that is larger than K is", X)

The remainder of this page intentionally left blank.
9. (a) (i) Draw an FR diagram for the given description.
(i)

Marks allocated as follows:
A: 1 mark for the SportsClub/Club entity with Name attribute marked as the primary key ($\leftarrow-$ correct entity and attribute symbols)
B: 1 mark for the Game entity with Code and Description attributes with Code marked as the primary key ($\leftarrow-$ - correct entity and attribute symbols)
C: 1 mark for the Sponsor entity with Title attribute marked as the primary key ($\leftarrow-$ correct entity and attribute symbols)
D: 1 mark for the Player entity with NIC and Name attributes and NIC marked as the primary key (+- - correct entity and attribute symbols)
E: 1 mark for the composite attribute Name which consists of "Surname" and "Initials" ($\leftarrow-$ correct attribute symbols)

F: 1 mark for "hours" attribute in Plays rclationship ($\leftarrow-$ - correct attribute symbol)
G: 1 mark for attaches [or other meaningful word]) relationship ($\leftarrow--$ correct relationship symbol, cardinality)
H: 1 mark for plays [or other meaningful word]) relationship ($\leftarrow-$ - correct relationship symbol, cardinality)
I: 1 mark for has [or other meaningful word]) relationship (+- - correct relutionship symbol, cardinality)
J: 1 mark for completeness (spelling, non-display of additional incorrect content) [ignore case]
(ii) Fxtend the ER to include the number of hours played by each player for each game. See above.
(iii) Extend the ER to include sponsor's details.

See above.

SOME TRANSLATIONS:

Entities	Attributes
	\%
\}్రిటascos	
5000	
C32905x mes	か®

Attaches: ฐૃజిఠอณ, గிఠลజ
Plays: Wi.

(b) (i) Write an SQL statement to display the number of players who won gold medals.

Select count (*) from Winner where MedalType='Gold';
Notes:
(\mathcal{A}) Although not perfect, the use of a valid field name from the Winner table is acceptable as a replacement of * in above.
(\mathcal{B}) Semicolon is not essential for credit.
(ii) In which normal form does the above table exist? Justify.

Marks allocated as follows:
A: 1 mark for any one of the following:

- 2nd NF
- 1st NF and 2nd NF

B: 1 mark for

(iii)

1 mark for each:
A: Winner (NIC, MatchID, MedalType)
B: Medal (MedalType, Prize)

Marking guidelines:

A: The primary keys should be marked. The Winner table name and NIC and MatchID attribute names should be as given. The other attribute must match the primary key of the second table.
B: The primary key should be marked. The Prize attribute name should be as given.
10. (a) (i) Draw context diagram.

Marks allocated as follows:
A: 1 mark for Letter registration system high-level process. ($\leftarrow-$ - correct symbol) [Other meaningful names such as Post office system also acceptable.]
B: 1 mark for Customer external cntity ($\leftarrow-$ - correct symbol)
C: 2 marks for correctly labelled data flows with proper directions. ($\leftarrow \mathrm{A}, \mathrm{B})$ The 2 marks for C are given as follows:

If all six data flows correct, give the full 2 marks.
If three to five data flows correct, give only 1 mark.

SOME TRANSLATIONS:

Stamps counter - פęc m melo

Register letter - 88c \&icuseco m

Weight - ลర

Required postage for letter + amount of money -

Stamp details for letter $+\underline{\text { balance }}$ amount of money -

Receipt with Unique Identification Code for the letter -

(b) (i)
List three significant reasons why requirement analysis is important for this COTS project too.
(Answer must be specific to COTS use.)

1 mark each for any three of the following for a maximum of 3 marks:
 ఢ్rmiరీ ఎ ఎęn

 2680)
 -อひผ゙ 2580)

(ii) Write down the labels (A-G) of all the functional requirenents.

A, C, E
Marks given as follows:
2 marks if all three correct
1 mark for either one or two correct
NOTE: For each incorrect label reduce one mark for a minimum total mark of zero.
(iii) What is the most appropriate testing strategy for your team to evaluate the selected COTS system?

Wue ooter e

(ii) Draw level 1 DFD.

NOTE: Intcrnal recording of customer details with unique registration number is not included.

Marks allocated as follows:
A: 1 mark for the Determine postage process (+- - correct symbol, process id, location)
B: 1 mark for the Issue stamps process (+- correct symbol, process id, location)
C: 1 mark for the Register letter process (-- - correct symbol, process id, location)
D: 1 mark for Postage table data store (+- - correct symboi, data store id, correct data flow(s) [at least postage] linking it with the Determine postage process)
E: 1 mark for the Customer external entity and all six correctly labelled data flows with proper directions connecting properly with the three processes. (\ldots correct symbol)

Notes
(A) Other equivalent and a meaningful names for the processes, locations and the data store are also acceptable.
(\mathcal{B}) The process and data store ids have to be unique and may be different to the ones shown.

